Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Signal ; 90: 110212, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34896620

RESUMO

The TSH receptor (TSHR) is the major regulator of thyroid hormone biosynthesis in human thyrocytes by regulating the transcription of a number of genes including thyroglobulin (TG) and thyroperoxidase (TPO). Until recently, it was thought that TSHR initiated signal transduction pathways only at the cell-surface and that internalization was primarily involved in TSHR desensitization and downregulation. Studies primarily in mouse cells showed that TSHR internalization regulates gene transcription at an intracellular site also. However, this has not been shown for genes involved in thyroid hormone biosynthesis in human thyrocytes. We used human thyrocytes in primary culture. In these cells, the dose-response to TSH for gene expression is biphasic with low doses upregulating gene expression and higher doses decreasing gene expression. We used two approaches to inhibit internalization. In the first, we used inhibitors of dynamins, dynasore and dyngo-4a. Pretreatment with dynasore or dyngo-4a markedly inhibited TSH upregulation of TG and TPO mRNAs, as well as TG secretion. In the second, we used knockdown of dynamin 2, which is the most abundant dynamin in human thyrocytes. We showed that dynamin 2 knockdown inhibited TSHR internalization and decreased the TSH-stimulated levels of TG and TPO mRNAs and proteins. Lastly, we showed that the level of the activatory transcription factor phosphorylated cAMP response element binding protein (pCREB) in the cell nuclei was reduced by 68% when internalization was inhibited. We conclude that upregulation of genes involved in thyroid hormone synthesis in human thyrocytes is, in part, dependent on internalization leading to nuclear localization of an activated transcription factor(s).


Assuntos
Iodeto Peroxidase , Tireoglobulina , Animais , Humanos , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Camundongos , Receptores da Tireotropina/genética , Receptores da Tireotropina/metabolismo , Tireoglobulina/genética , Tireoglobulina/metabolismo , Tireotropina/genética , Tireotropina/farmacologia , Transcrição Gênica
2.
Mol Cell Endocrinol ; 518: 111032, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32941925

RESUMO

Thyroid transcription factors (TTFs) - NKX2-1, FOXE1, PAX8 and HHEX - regulate multiple genes involved in thyroid development in mice but little is known about TTF regulation of thyroid-specific genes - thyroglobulin (TG), thyroid peroxidase (TPO), deiodinase type 2 (DIO2), sodium/iodide symporter (NIS) and TSH receptor (TSHR) - in adult, human thyrocytes. Thyrotropin (thyroid-stimulating hormone, TSH) regulation of thyroid-specific gene expression in primary cultures of human thyrocytes is biphasic yielding an inverted U-shaped dose-response curve (IUDRC) with upregulation at low doses and decreases at high doses. Herein we show that NKX2-1, FOXE1 and PAX8 are required for TSH-induced upregulation of the mRNA levels of TG, TPO, DIO2, NIS, and TSHR whereas HHEX has little effect on the levels of these thyroid-specific gene mRNAs. We show that TSH-induced upregulation is mediated by changes in their transcription and not by changes in the degradation of their mRNAs. In contrast to the IUDRC of thyroid-specific genes, TSH effects on the levels of the mRNAs for NKX2-1, FOXE1 and PAX8 exhibit monophasic decreases at high doses of TSH whereas TSH regulation of HHEX mRNA levels exhibits an IUDRC that overlaps the IUDRC of thyroid-specific genes. In contrast to findings during mouse development, TTFs do not have major effects on the levels of other TTF mRNAs in adult, human thyrocytes. Thus, we found similarities and important differences in the regulation of thyroid-specific genes in mouse development and TSH regulation of these genes in adult, human thyrocytes.


Assuntos
Diferenciação Celular , Células Epiteliais da Tireoide/efeitos dos fármacos , Tireotropina/farmacologia , Transcrição Gênica/efeitos dos fármacos , Adulto , Autoantígenos/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Humanos , Iodeto Peroxidase/genética , Proteínas de Ligação ao Ferro/genética , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Fator de Transcrição PAX8/genética , Fator de Transcrição PAX8/fisiologia , Cultura Primária de Células , Estabilidade de RNA/efeitos dos fármacos , Estabilidade de RNA/genética , Receptores da Tireotropina/genética , Tireoglobulina/genética , Células Epiteliais da Tireoide/citologia , Células Epiteliais da Tireoide/fisiologia , Fator Nuclear 1 de Tireoide/genética , Fator Nuclear 1 de Tireoide/fisiologia , Iodotironina Desiodinase Tipo II
3.
Thyroid ; 30(2): 270-276, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31805824

RESUMO

Background: Thyrotropin (TSH) and thyroid-stimulating antibodies (TSAbs) activate TSH receptor (TSHR) signaling by binding to its extracellular domain. TSHR signaling has been studied extensively in animal thyrocytes and in engineered cell lines, and differences in signaling have been observed in different cell systems. We, therefore, decided to characterize and compare TSHR signaling mediated by TSH and monoclonal TSAbs in human thyrocytes in primary culture. Methods: We used quantitative reverse transcription-polymerase chain reaction to measure mRNA levels of thyroid-specific genes thyroglobulin (TG), thyroperoxidase (TPO), iodothyronine deiodinase type 2 (DIO2), sodium-iodide symporter (NIS), and TSHR after stimulation by TSH or two monoclonal TSAbs, KSAb1 and M22. We also compared secreted TG protein after TSHR activation by TSH and TSAbs using an enzyme-linked immunosorbent assay. TSHR cell surface expression was determined using fluorescence activated cell sorting (FACS). Results: We found that TSH at low doses increases and at high doses (>1 mU/mL) decreases levels of gene expression for TSHR, TG, TPO, NIS, and DIO2. The biphasic effect of TSH on signaling was not caused by downregulation of cell surface TSHRs. This bell-shaped biphasic dose-response curve has been termed an inverted U-shaped dose-response curve (IUDRC). An IUDRC was also found for TSH-induced regulation of TG secretion. In contrast, KSAb1- and M22-induced regulation of TSHR, TG, TPO, NIS, and DIO2 gene expression, and secreted TG followed a monotonic dose-response curve that plateaus at high doses of activating antibody. Conclusions: Our data demonstrate that the physiological activation of TSHRs by TSH in primary cultures of human thyrocytes is characterized by a regulatory mechanism that may inhibit thyrocyte overstimulation. In contrast, TSAbs do not exhibit biphasic regulation. Although KSAb1 and M22 may not be representative of all TSAbs found in patients with Graves' disease, we suggest that persistent robust stimulation of TSHRs by TSAbs, unrelieved by a decrease at high TSAb levels, fosters chronic stimulation of thyrocytes in Graves' hyperthyroidism.


Assuntos
Expressão Gênica/efeitos dos fármacos , Imunoglobulinas Estimuladoras da Glândula Tireoide/farmacologia , Células Epiteliais da Tireoide/efeitos dos fármacos , Tireotropina/farmacologia , Autoantígenos/genética , Autoantígenos/metabolismo , Células Cultivadas , Humanos , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Receptores da Tireotropina/genética , Receptores da Tireotropina/metabolismo , Simportadores/genética , Simportadores/metabolismo , Tireoglobulina/genética , Tireoglobulina/metabolismo , Células Epiteliais da Tireoide/metabolismo , Iodotironina Desiodinase Tipo II
4.
Mol Pharmacol ; 97(1): 2-8, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31704717

RESUMO

The thyrotropin (TSH) receptor (TSHR) signals via G proteins of all four classes and ß-arrestin 1. Stimulation of TSHR leads to increasing cAMP production that has been reported as a monotonic dose-response curve that plateaus at high TSH doses. In HEK 293 cells overexpressing TSHRs (HEK-TSHR cells), we found that TSHR activation exhibits an "inverted U-shaped dose-response curve" with increasing cAMP production at low doses of TSH and decreased cAMP production at high doses (>1 mU/ml). Since protein kinase A inhibition by H-89 and knockdown of ß-arrestin 1 or ß-arrestin 2 did not affect the decreased cAMP production at high TSH doses, we studied the roles of TSHR downregulation and of Gi/Go proteins. A high TSH dose (100 mU/ml) caused a 33% decrease in cell-surface TSHR. However, because inhibiting TSHR downregulation with combined expression of a dominant negative dynamin 1 and ß-arrestin 2 knockdown had no effect, we concluded that downregulation is not involved in the biphasic cAMP response. Pertussis toxin, which inhibits activation of Gi/Go, abolished the biphasic response with no statistically significant difference in cAMP levels at 1 and 100 mU/ml TSH. Concordantly, co-knockdown of Gi/Go proteins increased cAMP levels stimulated by 100 mU/ml TSH from 55% to 73% of the peak level. These data show that biphasic regulation of cAMP production is mediated by Gs and Gi/Go at low and high TSH doses, respectively, which may represent a mechanism to prevent overstimulation in TSHR-expressing cells. SIGNIFICANCE STATEMENT: We demonstrate biphasic regulation of TSH-mediated cAMP production involving coupling of the TSH receptor (TSHR) to Gs at low TSH doses and to Gi/o at high TSH doses. We suggest that this biphasic cAMP response allows the TSHR to mediate responses at lower levels of TSH and that decreased cAMP production at high doses may represent a mechanism to prevent overstimulation of TSHR-expressing cells. This mechanism could prevent chronic stimulation of thyroid gland function.


Assuntos
AMP Cíclico/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Receptores da Tireotropina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tireotropina/administração & dosagem , Relação Dose-Resposta a Droga , Regulação para Baixo , Dinamina I/genética , Dinamina I/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Toxina Pertussis/administração & dosagem , Receptores da Tireotropina/genética , Transdução de Sinais/genética , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo
5.
Endocrinology ; 160(6): 1468-1479, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31127272

RESUMO

Endogenously expressed TSH receptors (TSHRs) on orbital fibroblasts of patients with Graves ophthalmopathy (GO) use crosstalk with IGF1 receptors (IGF1R) to synergistically stimulate secretion of hyaluronan (HA), a major component of GO pathology. We previously showed crosstalk occurred upstream of mitogen-activated protein kinase (ERK) phosphorylation. Because other G protein-coupled receptors engage arrestin-ß-1 (ARRB1) and ERK, we tested whether ARRB1 was a necessary component of TSHR/IGF1R crosstalk. HA secretion was stimulated by the TSHR-stimulating monoclonal antibodies M22 and KSAb1, or immunoglobulins from patients with GO (GO-Igs). Treatment with M22, as previously shown, resulted in biphasic dose-response stimulation of HA secretion. The high-potency phase was IGF1R dependent, and the low-potency phase was partly IGF1R independent. KSAb1 produced a monophasic dose-response stimulation of HA secretion, whose potency was lowered >20-fold after IGF1R knockdown. ARRB1 knockdown abolished M22's high-potency phase and lowered KSAb1's potency and efficacy. ARRB1 knockdown inhibited GO-Ig stimulation of HA secretion and of ERK phosphorylation. Last, ARRB1 was shown to be necessary for TSHR/IGF1R proximity. In contrast, ARRB2 knockdowns did not show these effects. Thus, TSHR must neighbor IGF1R for crosstalk in GO fibroblasts to occur, and this depends on ARRB1 acting as a scaffold. Similar scaffolding of TSHR and IGF1R by ARRB1 was found in human osteoblast-like cells and human thyrocytes. These findings support a model of TSHR/IGF1R crosstalk that may be a general mechanism for G-protein-coupled receptor/receptor tyrosine kinase crosstalk dependent on ARRB1.


Assuntos
Receptor IGF Tipo 1/metabolismo , Receptores da Tireotropina/metabolismo , Células Epiteliais da Tireoide/metabolismo , beta-Arrestina 1/metabolismo , Animais , Linhagem Celular , Técnicas de Silenciamento de Genes , Oftalmopatia de Graves/metabolismo , Humanos , Camundongos , Fosforilação , Receptor IGF Tipo 1/genética , Receptores da Tireotropina/genética , Transdução de Sinais/fisiologia , beta-Arrestina 1/genética
6.
J Cereb Blood Flow Metab ; 35(9): 1537-46, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25966954

RESUMO

Postsynaptic density-95 (PSD95) is a scaffolding protein in cerebral vascular smooth muscle cells (cVSMCs), which binds to Shaker-type K(+) (KV1) channels and facilitates channel opening through phosphorylation by protein kinase A. ß1-Adrenergic receptors (ß1ARs) also have a binding motif for PSD95. Functional association of ß1AR with KV1 channels through PSD95 may represent a novel vasodilator complex in cerebral arteries (CA). We explored whether a ß1AR-PSD95-KV1 complex is a determinant of rat CA dilation. RT-PCR and western blots revealed expression of ß1AR in CA. Isoproterenol induced a concentration-dependent dilation of isolated, pressurized rat CA that was blocked by the ß1AR blocker CGP20712. Cranial window imaging of middle cerebral arterioles in situ showed isoproterenol- and norepinephrine-induced dilation that was blunted by ß1AR blockade. Isoproterenol-induced hyperpolarization of cVSMCs in pressurized CA was blocked by CGP20712. Confocal images of cVSMCs immunostained with antibodies against ß1AR and PSD95 indicated strong colocalization, and PSD95 co-immunoprecipitated with ß1AR in CA lysate. Blockade of KV1 channels, ß1AR or disruption of PSD95-KV1 interaction produced similar blunting of isoproterenol-induced dilation in pressurized CA. These findings suggest that PSD95 mediates a vasodilator complex with ß1AR and KV1 channels in cVSMCs. This complex may be critical for proper vasodilation in rat CA.


Assuntos
Artérias Cerebrais/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Superfamília Shaker de Canais de Potássio/metabolismo , Vasodilatação/fisiologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Proteína 4 Homóloga a Disks-Large , Imidazóis/farmacologia , Isoproterenol/farmacologia , Masculino , Norepinefrina/farmacologia , Ratos , Ratos Sprague-Dawley , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...